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The early study of convective heat transfer considered the branches of forced and free 
convection independently with only passing reference to their possible interaction. In fact 
the two are extreme cases of the general condition of "mixed" or "combined" forced and 
free convection where both mechanisms operate simultaneously. The present contribution 
aims to provide an up-to-date review of those works concerned with mixed convection 
heat transfer in vertical tubes. The review is divided into two sections, the first dealing 
with laminar flow, and the second with turbulent flow; further subdivisions are made 
according to whether the work is theoretical or experimental. Comparisons between theory 
and experiment are made where possible, expressions defining the conditions for onset 
of buoyancy effects are presented and equations for determining heat transfer are given. 
The paper ends with some general comments and recommendations. The survey is 
restricted to fluids of moderate Prandtl number; mixed convection in liquid metals can 
display very different characteristics which will be discussed in a future paper. 

Keywords:  mixed convection; combined convection; buoyancy-influenced flow; inter- 
action between forced and free convection; laminarization; thermogravitation 

I n t r o d u c t i o n  

The term "mixed convection" is used to describe the process 
of heat transfer in fluids where, due to variations of gravitational 
body force associated with non-uniformity of density within 
the system, the flow field is significantly modified from that 
which would prevail under conditions of uniform density. The 
processes involved are usually thought of in terms of the concept 
of fluid buoyancy and the effects are frequently referred to as 
effects of buoyancy on heat transfer. 

In the early development of the subject of convective heat 
transfer, free and forced convection were studied separately and 
any interaction between the two was ignored. When the 
possibility of such interactions began to be investigated, attention 
was at first restricted to laminar and transitional flow conditions. 
More recently it has become clear not only that measurable 
influences of buoyancy can exist in fully turbulent flow, but 
that under certain conditions buoyancy effects can in fact be 
the dominant factor in determining heat transfer. 

In this paper attention is focussed on mixed convection in 
vertical tubes. Two thermal boundary conditions are of particular 
interest, namely uniform wall temperature and uniform wall 
heat flux. The early experimental work on mixed convection 
was carried out using test sections heated by means of saturated 
steam, resulting in approximately uniform wall temperature. 
Later workers have in the main utilized electrical heating 
leading to approximately uniform wall heat flux. 

The effects of buoyancy on heat transfer rates can be either 
to enhance the process or to impair it depending on the flow 
orientation (ascending or descending), the flow conditions and 
on heated length. A sound understanding of the processes 
involved is needed in order to take proper account of the effects 
of buoyancy on heat transfer in the design of thermal systems. 
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L a m i n a r  f l o w  m i x e d  c o n v e c t i o n  

The effect of simultaneous buoyancy forces and externally- 
applied pressure forces on steady laminar flow in a vertical pipe 
is amenable to calculation. The general result is that when the 
flow is in the upward direction past a heated surface (or 
downwards past a cooled surface) heat transfer is enhanced, 
whereas in the opposite cases heat transfer is impaired. These 
influences are not the result of any change in thermal diffusivity 
but are instead a consequence of the distortion of the velocity 
field and pattern of convection in the fluid. 

Theoretical studies of laminar mixed convection 
Work on the subject dates from 1942, when Martinelli and 
Boelter 1 analysed a very simple fully developed flow model. 
Other fully developed solutions were subsequently reported by 
Ostroumov, 2 Hallman, a Hanratty et  al. ,  4 Brown, 5 and Morton. 6 

With time and the advent of digital computers the number 
of the simplifying assumptions decreased and, in particular, 
attempts were made to obtain developing flow solutions. Rosen 
and Hanratty, 7 following earlier work by Pigford, 8 used the 
boundary layer integral method with power series for the 
velocity and temperature profiles. Thus they reduced the 
problem to one of integrating a number of simultaneous 
non-linear differential equations. Numerical solutions, taking 
account of the variations of all the physical properties, were 
obtained for upward flow of air with uniform temperature by 
Bradley and Entwistle. 9 Marner and McMillan 1° also obtained 
numerical solutions for this boundary condition taking account 
of flow development. Their predictions of arithmetic mean 
Nusselt number are shown in Figure 1. Figure 2 shows an 
interesting calculation of local Nusselt number for which the 
influence of buoyancy increases following the thermal entry 
development and then reduces further downstream as the fluid 
temperature approaches the wall temperature. 
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Figure I Comparison of arithmetic mean Nusselt numbers with 
the results of Martinelli and Boelter (adapted from Marner and 
McMillan~°; with permission of the American Society of Mechanical 
Engineers) 

Lawrence and Chato 11 and Collins 12'13 have developed 
numerical models for predicting developing mixed convection 
taking account of viscosity and density variations and using 
marching solution procedures. Zeldin and Schmidt 14 solved 
the full elliptic equations governing the problem using an 
iterative method in order to avoid the use of marching pro- 
cedures, which had been questioned for conditions of strong 
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Figure 2 Typical behavior of local Nusselt number near the point of 
maximum velocity profile distortion (adapted from Marner and 
McMillan~°; with permission of the American Society of Mechanical 
Engineers) 

N o t a t i o n  

a Radius of tube, d/2 (m) 
CD Specific heat at constant pressure (J/kgK) 

t~p Integrated specific heat, (Tw- Tb ~ Cp d r  (J/kgK) 
b 

C. Coefficient in 2 equation turbulence model 
d Tube diameter (m) 
g Acceleration due to gravity (m/s 2) 
G Mass velocity, 4 M/rcd 2 (kg/m2s) 
Gr Grashof number, (Pb-Pw) da g/P~ 
Gr Grashof number based on ~, (pb--/5) d 3 g/p2 
Gr* Grashof number based on heat flux, Off d4q/2v 2 
Gz Graetz number, Re Pr d/z (=  I/z*) 
h Heat transfer coefficient, qw/(Tw- Tb) (W/m 2 K) 
i Specific enthalpy (J/kg) 
k Turbulent kinetic energy (m2/s 2) 
l Length scale (m) 
L Tube length (m) 
M Mass flow rate (kg/s) 
N u N u s s e l t n u m b e r ,  hd/2 {lfo } 

z q. dz O 
Nuam Arithmetic mean Nusselt number 

2(T.--½(To + Tb)) 
p Pressure (N/m 2) 
Pe Peclet number, Re Pr 
Pr Prandtl number, gC~/2 
Pr Prandtl number based on Co, ~tCo/2 
qw Heat flux at the wall (W/m 2) 
r Radial coordinate (m) 
Ra Rayleigh number, Gr Pr 
Ra* Rayleigh number based on heat flux, Gr* Pr 
Re Reynolds number, Gd/# 
T Temperature (°C or K) 
T' Temperature fluctuation (K) 

v Radial velocity fluctuation (m/s) 
V Radial velocity (m/s) 
w Axial velocity fluctuation (m/s) 
W Axial velocity (m/s) 
y Transverse coordinate measured from wall, a - r (m) 
y + y ,/ Tp/v 
z Axial coordinate (m) 

2 
z* Dimensionless axial coordinate, - -  

d Re Pr 

fl Coefficient of volume expansion (K- 1) 
AT Wall to bulk temperature difference, 7 " . - T  b (K) 
e Rate of dissipation of k (m2/s 3) 
x Von Karman constant 
2 Thermal conductivity (W/mK) 
# Dynamic viscosity (kg/ms) 
v Kinematic viscosity, #/p (m2/s) 
p Density (kg/m 3) 

Integrated density, (7".-  Tb~ p d r  (kg/m 3) 
b 

a t Turbulent Prandtl number 
z Shear stress, N/m 2 

Subscripts 
b Refers to fluid bulk conditions 
c Refers to thermodynamic critical pressure 
F Forced convection 
m Mean or mixing length 
min Minimum 
pc Refers to pseudocriticai value 
ref Reference value 
t Turbulent 
w Refers to conditions at the tube wall 
z Based on axial length 
0 Refers to inlet conditions 

Refers to the fully developed condition 
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Figure 3 Experimental and predicted magnitudes of Nu.m as a 
function of Gz L (adapted from Martinelli et al.~9; with permission of 
the American Institute of Chemical Engineers) 

buoyant influences. Nevertheless, difficulties in obtaining a 
solution were still encountered beyond a certain value of Gr/Re 
corresponding to a reversed flow in the central region of the 
pipe. 

In the case of buoyancy-aided convection, i.e. upward flow 
in a heated pipe or downward flow in a cooled one, the velocity 
in the vicinity of the wall increases with wall-to-fluid temperature 
difference (at constant flow rate) and decreases in the core. 
Eventually a concavity develops in the velocity profile in the 
core flow. Associated with these changes there is an enhancement 
of heat transfer coefficient. In practice, with sufficiently strong 
heating or cooling, the velocity profile gradually becomes 
unstable at the point of in flexion and flow unsteadiness results 
(see below). 

In the opposite case, i.e. downward heated flow or upward 
cooled flow, the velocity near the wall is reduced and there is 
an impairment of heat transfer. With strong enough heating 
(or cooling), the velocity gradient at the wall approaches zero 
and an instability develops there suddenly. 

The numerical solutions of Collins 13 illustrate the above 
behavior. These calculations were carried out for conditions 
covered in the experimental work of Scheele and other workers 
on the influence of heat transfer on stability of laminar flow in 
vertical tubes, x ~,15-t7 It was observed that as Reynolds number 
decreased, the critical value of Gr*/Re for onset of gradual 
instability decreased asymptotically to approximately 42.5 for 
the case of upward flow with uniform heat flux. An increase in 
the critical value of Gr*/Re with decrease in Reynolds number 
was observed for the case of downward flow with uniform heat 
flux. The highest critical value of Gr*/Re encountered was 
approximately 75 and this was for Reynolds numbers approaching 
zero. 

Exper imental  studies of  laminar mixed convect ion 
in vertical tubes 

The early experimental work involving mixed convection in 
vertical tubes was carried out using test sections in the form of 
double tube heat exchangers. Watzinger and Johnson 1 s in 1939 
reported experiments in which water flowing downward in a 
tube was cooled by an external flow. For  that arrangement free 
convection aided forced convection. Martinelli et al. 19 shortly 
afterwards reported experiments with upward flow of water and 
oil in tubes having uniform wall temperatures, heated by means 
of steam. Overall heat transfer rates considerably in excess of 

those predicted for forced convection were observed (Figure 3). 
The approximate theoretical model of Martinelli and Boelter 1 
was used with remarkable success as a basis for correlating the 
data. The following equation, which is identical with the 
theoretical result, apart from the slight adjustment of an index 
from 0.75 to 0.84, correlates all their data and that of Watzinger 
and Johnson to within +20%. 

f / G r  Pr d'~°s4) 1/3 
N U , m = l . 7 5 F ~ { G Z m + O . O 7 2 2 F 2 1 - - 1  ~ (1) 

[ \ L , / ,  J 

F 1 and F 2 are functions which are derived from theory and 
tabulated in Ref. 1. No data were produced by Martinelli et al. 
for the case where free convection opposed forced convection 
(heated downward flow). 

Subsequent work on laminar vertical mixed convection has 
been carried out using uniformly heated tubes. Clark and 
Rosenhow, 2° in experiments on water at high subcritical 
pressure flowing upwards in an electrically heated tube, produced 
data which were used by Hallman 3 for comparison with his 
analytical predictions for the fully developed case. Further 
experimental investigations were reported later by Hallman 21 
and Brown. s These data are in good agreement with Hallman's 
analysis, which is fitted well for 100<Gr*/Re< 10,000 by the 
equation: 

/Gr*'~o.28 
Nu=0.95L~e ) (2) 

Experimental results obtained by Kemeny and Somers 22 
using water and oil are shown in Figure 4. However, direct 
comparison of these results with earlier work cannot be made 
because the Nusselt numbers used by Kemeny and Somers were 
based on the inlet fluid temperature. More recent experiments 
by Barozzi et al. 23 have been compared with numerical solutions 
by Collins and good agreement is reported. Evidence of 
transition to turbulent flow near the end of the heated section 
was observed for Reynolds numbers of less than 1000. 

Further data can be found in the papers by Scheele and 
Hanratty 24 and Brown and Gauvin. 25 However, these experi- 
ments were concerned primarily with transitional flow. 

The above discussion of experimental studies of laminar 
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Figure 4 Plots of Nu o versus Gr*/Re for different values of Gz 
(adapted from Kemeny and SomersZ=; with permission of the 
American Society of Mechanical Engineers) 
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mixed convection in vertical tubes has been restricted to the 
case where free convection aids forced convection. An interesting 
conclusion which has emerged from the present review is that 
virtually no laminar flow heat transfer measurements have been 
reported for conditions where free convection opposes forced 
convection (heated downward flow or cooled upward flow). 
For such flows the influence of buoyancy should be to impair 
heat transfer relative to that for conditions of pure forced 
convection, provided the flow remains steady and laminar. 
However, as a result of the work of Scheele et al. on buoyancy- 
induced instability in laminar flow, it is clear that the range of 
conditions available for such experiments is likely to be rather 
limited. 

T u r b u l e n t  f l o w  m i x e d  c o n v e c t i o n  

Whereas the effects of buoyancy on heat transfer can be 
predicted readily for the laminar case, the situation is very 
different with turbulent flows: the data for such conditions show 
some unexpected trends (see reviews26-2a). In configurations 
with forced and free convection aligned, local heat transfer 
coefficients significantly lower than those for forced flow alone 
can result. In contrast, for downward flow in heated tubes 
buoyancy forces cause a general enhancement of the turbulent 
diffusion properties of the flow, with the result that wall 
temperature distributions are well-behaved and heat transfer 
coefficients are higher than those for forced flow alone. Even- 
tually, as the free convection component becomes more and 
more dominant, heat transfer for upward flow also becomes 

Studies of mixed convection in vertical tubes: J. D. Jackson et al. 

enhanced and in the limit the heat transfer coefficients for the 
two cases are the same. 

Examples of buoyancy-induced impairment of heat 
transfer 

In the earliest studies of turbulent mixed convection with 
atmospheric presure water and air, 18,29-34 there was little 
indication of the dramatic influences of buoyancy on heat 
transfer that were later to become evident in the work on fluids 
near the critical point 35'36 and which have provided the 
incentive for considerable research work in recent years. 

During early development work on supercritical pressure 
steam generators, Shitsman 37 and Ackerman 38 found severe 
localized impairment of heat transfer for upward flow in heated 
tubes at near-critical conditions (Figure 5). The effect was 
initially thought to be similar to film-boiling and was, in fact, 
given the name "pseudoboiling." There were, however, some 
surprising conditions where the wall temperatures were well 
below the pseudocritical value. 39"4° Under such conditions the 
fluid must have been in a liquid-like state even in the wall-layer 
region. 

It became apparent that the effect was due to buoyancy and 
not a form of film boiling when experiments with upflow were 
compared with those for downflow at otherwise identical 
conditions. Investigations of this type were first reported by 
Shitsman 41'42 and Jackson and Evans-Lutterodt 43 (Figure 6). 
Similar comparisons have since been made by a number of 
researchers, notably Bourke et al., 44, Fewster, 45 Alferov et 
a/., 4°'46'47 Watts and Chou, 48 and Bogachev et al. 49. 

The fact that the phenomenon of localized impairment due 
to buoyancy is not restricted to fluids at high pressure, but can 
occur in liquids and gases at normal pressure, has subsequently 
become clear as a result of experiments by Steiner, 5° Kenning 
et al., 51 Hall and Price, 52'53 and Fewster. 45 Kenning et al. 
found wall temperature peaks for upward flow of water at 5 bar 
(Figure 7) and Fewster made comparisons between upward and 
downward flow of atmospheric pressure water (Figures 8 and 
9). The case shown in Figure 9 is of special interest because 
the Reynolds number is below that normally associated with 
turbulent flow. The measurements suggest that buoyancy- 
induced turbulence is present, the sudden fall in wall temperature 
for upward flow being due to transition. 

Mixed convection at low Reynolds number has also been 
studied by Rouai. 54 Buoyancy-induced transition to turbulent 
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flow was clearly observed in upward flow (Figure 10a) whereas 
for downward flow turbulence existed throughout the heated 
section (Figure 10b). In downward flow a periodic Nusselt 
number variation (Figure 11) suggested that small, buoyancy- 
induced recirculation cells might have been present. Wilkinson 
et al. 55 examined the conditions for flow reversal at the pipe wall 
in a buoyancy-opposed flow; otherwise the problem has received 
little attention. 

The examples quoted above illustrate the importance of 
interactions between forced and free convection for flow in 
vertical pipes. An explanation of the mechanism involved has 
been given by Hall and Jackson. 56 They suggested that the 
dominant factor was the modification of the shear stress 
distribution across the pipe, with consequential change in 
turbulence production. The analysis of Hall and Jackson 56 has 
been extended by Jackson and Hall 28 to provide a general 
criterion for the onset of buoyancy effects applicable both for 
supercritical and normal pressure fluids. For influences of 
buoyancy on heat transfer coefficient to be less than 5% of the 
forced convection value, the analysis yields a limit: 

G% <10_ 5 (3) 
Re 2.7 

Comparison of predicted criterion with experiment 
In order to test the validity of the criterion, experimental data 
from the authors' programme of research on heat transfer to 
supercritical pressure carbon dioxide have been presented in 
terms of the parameter Grb/Re 27. Figures 12(a) and (b) show 
experimental data that are consistent with the criterion (the 
ordinate is the ratio of the observed Nusselt number to that 
for forced flow in the absence of buoyancy effects but under 
conditions that are otherwise identical). 

Alferov et al. 57 presented data for supercriticai pressure water 
in terms of the ratio of calculated heat transfer coefficients for 
forced and free convection (Figure 13). It can be demonstrated 
with the aid of established correlation equations for free 
and forced convection that hfree/hforced is proportional to 

2 4 - 6  0 5  Gr/Re • Pr " raised to the power one third. Thus the criterion 
for negligible buoyancy suggested by the data of Alferov et al.57 

(Figures 13 and 14), namely hforeea/hfree > 3, can be re-expressed 
a s :  

Gr 
< 2.4.10- 5 (4) 

Re2.,~6 prO.5 

For  104<Re<10 s, this criterion gives effectively the same 
classification of data as that of Jackson and Hall. 

Some further data which can be used for testing the validity 
of the criterion have been produced by Brassington and 
Cairns 5s for supercritical pressure helium. Buoyancy-induced 
wall temperature peaks occurred over a wide rage of reduced 
pressure but it was found that such effects were not present 
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a reliable criterion for the determination of conditions under 
which buoyancy effects can be neglected. 

A simple equation describing mixed convection heat 
transfer in vertical tubes 
Although the theory of Hall and Jackson was developed in 
order to obtain a criterion for the onset of heat transfer 
impairment for the case of upward flow in a heated pipe, it is 
also applicable to downward flow where there is heat transfer 
enhancement. It has been generalized 28 to provide the following 
simple description of the manner in which the ratio of buoyancy- 
influenced to buoyancy-free Nusselt numbers varies with the 
buoyancy parameter ~ / R e 2 " 7 ~  °'5 

Nu = 1 10*G-r 10..6 
-- Re2.7 ~ ; . 5  

(6) 
NUF b b 
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Figure 10 Correlation of low flow data for water (adapted from 
Rouai"): (a) upflow and (b) downflow 

under conditions where: 

Gr~  < 2 . 4 . 1 0 -  5 (5) 
Re 2.7 

Bearing in mind that Grb is somewhat less than Grb, the 
agreement with the criterion is extremely good. 

Although the main sources of data concerning the onset of 
buoyancy effects have been investigations with supercritical 
pressure fluids, some work has also been done using water at 

4 5  5 1  pressures near to atmospheric • and with atmospheric pressure 
air. 59 These studies have further substantiated inequality (3) as 
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Figure 11 Nusselt number variation in mixed convection heat 
transfer to water (adapted from Rouai ~) 

Nu 

Nu F 

10 

01 

(a) 

/ 

:"" grV Re~7 
I I I t I I I I 

10-6 5 10-5 5 I0-~ s 10-3 S 

Nu 101- Nu -- 27 o91 It 3 
_ _  - - =  I ~ 

NuF I ~ 
arJRe z7 

10-s i0-~ 10-3 i0-2 10-I 

(b) 
Figure 12(a-b) Mixed convection data for supercritical carbon 
dioxide (adapted from Fewster=e): (a) upward flow and (b) 
downward flow 

Int. J. Heat and Fluid Flow, Vol. 10, No. 1, March 1989 7 



Studies of mixed convection in vertical tubes: J. D. Jackson et al. 

h - 

0.2 - I 
. hfree 

1 I I , 

0.5 1 2 4 6 8 10 

figure 73 Correlation of data for upward flow of supercritical 
pressure fluids (adapted from Alferov et a/.“; with permission of 
Scripta Technica Inc.) 

h'hforted 

L 
diameter 

x 20mm 

A l&mm 

a 16mm 

III II I I III vfref 

05 10 2. 0 5.0 10. 0 

Figure 74 Correlation of downward flow mixed convection data 
for supercritical pressure water (adapted from Alferov et a/.“; with 
permission of Scripta Technica Inc.) 

NU 

NUT 

10,000 cr$ Re," b%>” ’ 
I I 
10 100 

Figure 15 Theoretical prediction of general features of mixed 
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The negative sign refers to the buoyancy-aided case and the 
positive sign to the opposed case. It should be borne in mind 
that this expression was obtained using simple physical theory 
and empirical relationships for buoyancy-free heat transfer (for 
details see Ref. 28). In consequence it merely represents an 
attempt to predict gross trends as buoyancy effects begin to 
modify the forced flow significantly, however it is surprisingly 
consistent with observed behavior (see below). 

With increase in the buoyancy parameter, an impairment of 
heat transfer is indicated for upward flow and an enhancement 
for downflow. The curves representing Equation 6 for the two 
cases are shown in Figure 15. It is of interest to note that for 

upward flow with strong enough buoyancy influence a recovery 
in heat transfer is indicated, leading eventually to enhancement 
at high values of the buoyancy parameter. Data for upward 
flow of airs9 and mercury61 and for downward flow of water6’ 
are shown in Figures 16, 17, and 18, respectively. These show 
behavior consistent with that indicated by Equation 6. 

Correlation of data for mixed convection 

The theory referred to in the previous sections has proved to 
be useful for correlating data and has been employed when 
presenting data from the authors’ program of research into 
heat transfer to fluids at supercritical pressure-see Figures 
12(a) and (b) (earlier). It is clear that for upward flow (Figure 
12a) the data do not correlate in the region where heat transfer 
is impaired in terms of the parameters Nu/Nu, and Gr,/Rez.‘. 
However, for downward flow (Figure 12b) an excellent corre- 
lation is achieved throughout the mixed convection regime by 
the equation 

$=[ 1 +2750~~)c~9’]“3 

The form of the above equation was chosen such that Nu 
becomes independent of Re, for conditions where buoyancy is 
dominant (i.e. tending towards pure free convection). 
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figure 76 Effect of buoyancy on heat transfer to air at atmospheric 
pressure for upward flow (adapted from Byrne and EjiogP; with 
permission from the Council of the Institute of Mechanical Engineers) 
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Figure 17 Heat transfer with an ascending mercury flow in a 
heated vertical pipe (adapted from Buhr et al.@‘; with permission of 
the American Society of Mechanical Engineers) 
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Figure 18 Effect of buoyancy on heat transfer to water at atmos- 
pheric pressure for downward f low (adapted from Jackson and 
Fewstere=; with permission of Harper and Row) 

The contrast between the upward and downward flow cases 
is interesting: for the former, buoyancy forces lead to localized 
effects (wall temperature peaks), whereas for the latter they do 
not. For  upward flow impairment or enhancement of heat 
transfer can occur depending on the magnitude of the buoyancy 
force, whereas for downward flow only enhancement is found. 
Although the effects might seem to be anomalous when viewed 
without the aid of the model of Jackson and Hall, they can be 
seen to follow a meaningful pattern when considered in the light 
of the model. The general picture of mixed convection in vertical 
tubes embodied in Equation 6 and illustrated in Figure 15 thus 
proves to be surprisingly accurate. 

In parallel with work on supercritical pressure fluids, the 
present authors and co-workers have also studied mixed 
convection to water and to air, both at atmospheric pressure 
(Jackson and Fewster 62 and Axcell and Hall64). Again 
the theoretical guidelines have proved to be useful. Jackson 
and Fewster used as their correlating parameter the group 
~b/ReZ'62s~b°s.  The data of Jackson and Fewster for down- 
ward flow of water in a heated tube are shown in Figure 19 and 
can be seen to be satisfactorily correlated. A correlation 
equation which fitted the data over the entire range of conditions 
was arrived at by adjusting the index in order to make Nusselt 
number independent of Reynolds number when buoyancy 
influences become dominant. This equation is: 

[ 4500Grb 1 °"31 Nu = 1 4 - -  (8) 
Nu F 2 6zs--o s Reb" P%' J 

Figure 19 also includes some early data for atmospheric 
pressure water. 18,32 The agreement between the equation and 
the data is quite reasonable when account is taken of the 
uncertainties involved, particularly in the values of NUF used 
for normalizing the data. 

Figure 20 shows the data of Axceli and Hall 64 for downward 
flow of air in a heated pipe plotted on the same basis. Some 
measurements by Easby 65 of downward flow mixed convection 
to nitrogen at about 4 bar are also of interest. When compared 
with Equation 7 (the correlation equation developed for the 
supercritical pressure carbon dioxide data) they are found to 
be in fair agreement. This is also the case for the data of Brown 
and Gauvin, 25 who found enhancement of heat transfer by up 
to 70% in downward flow experiments on air. Further sources 
of data on downward flow mixed convection are Krasyakova 
e t  al . ,  66 Ikryannikov e t  al . ,  67'68 and Alferov e t  al .  57 Thus it 
can be seen that there is a significant body of information 
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available concerning the enhancement of heat transfer due to 
buoyancy effects for downward flow in heated tubes. The 
observed trends are in all cases consistent with the simple model 
of mixed convection in vertical tubes of Jackson and Hall and 
can be adequately described by expressions such as Equations 
7 or 8. For upward flow in heated tubes a significant amount 
of experimental data is also available. Whilst the trends are 
broadly consistent with the model, the problem of correlating 
data is more complicated, particularly because of complex flow 
development behavior. 

The difficulty of correlating upward flow data in terms of 
purely local parameters (Figure 21) led Rouai 54 to examine 
conditions at wall temperature peaks. Minimum heat transfer 
was correlated by: 

Numi n [- Gr* -I 0.28 
NUF -- 14'91LRe3"4~K-Pr°A] (9) 

and the distance to the first wall temperature peak by: 

z=0.051F. Gr*_ ] - o . ,  
d LRe3.42s pr0. 8 (10) 

10 Nu : [1 + 4,500 G'~/Reb2 ' 2 s P'r~° s ] °'~ j ~ , ~ ,  Nu ,uF \ 
NUF 

• Doto0f  Jockson end Fewster ~2 
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Figure 19 Correlation of mixed convection data for downward 
f low of water (adapted from Jackson and Fewster6=; with permission 
of Harper and Row) 
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Figure 20 Comparison of downward f low correlation with data for 
air (adapted from Axcell and Hall~; with permission of Harper and 
Row) 
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Figure 21 Upward f low data for water at atmospheric pressure 
(from RouaP') 
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Rouai also compared his data with a refinement of Hall and 
Jackson's model which accounts for the influence of heat 
transfer on the buoyant layer. 54'69 An implicit expression for 
Nu/Nuv results: 

NU=Fl+8×10, Or" (Nu 2]o,6 
Nut L I -  Rea'a25pr°a~,NuvJ (11) 

It should be noted that this correlation gives a discon- 
tinuity in Nusselt number for heated upward flow when 
Gr*/Re 342~ Pr °'a ~3  x 10 -6. 

Numerical  studies of  turbulent mixed convection 
in vertical tubes 

The various applications of turbulence closures to mixed 
convection are considered under the following headings: 

(i) Prescribed eddy diffusivity models 
(ii) Mixing length models 

(iii) One-equation transport models 
(iv) Two-equation transport models 
(v) Higher order models 

The categorization above does not convey the complete picture 
because of the absence of any reference to the flow formula- 
tions adopted (whether fully developed or developing thermal- 
hydraulic conditions are assumed to prevail). It is well established 
that very long flow development lengths occur in regions of the 
ascending mixed convection regime and therefore the validity 
of studies using even the most refined turbulence models cast 
in a fully developed formulation can be seriously compromised. 

The most general form of the mean flow governing equations 
used in the works reviewed below are the time-averaged 
momentum and energy equations written in the "thin shear" 
(or "boundary layer") formulations. Thus, in cylindrical polar 
coordinates: 

Momentum 

- - - - -  r 1~ ~ 

r Or Oz p dz r Or 

+ [1 --f l(T--  T,,f)]_g, (12) 

where 

S -  g for ascending flow 
gz 

+ 9 for descending flow 

Energy 

r Or Or L \ P r  Or ] d  

The equations are written in the Boussinesq approximation: 
density variations are neglected except in the body force term 
of the momentum equation where a linearized function of 
temperature is employed. The models in categories (i) to (iv) 
above make recourse to the concept of turbulent viscosity by 
which Reynolds stress appearing in the momentum equation 
is related to the mean velocity gradient: 

OW 
- - v w = v t -  (14) 

Or 

Similarly, the turbulent heat flux in the energy equation is 
related to the mean temperature gradient: 

- v T -  v, OT 
~, Or (15) 

The usual practice is to set the turbulent Prandtl number to 
a constant value, g,=0.9. The different strategies adopted to 
determine turbulent viscosity, vt, are vital to the success (or 
lack of it) experienced in the application of turbulence models 
to turbulent mixed convection: it will be seen below that the 
simpler models fail to capture even the general trends of heat 
transfer impairment and enhancement. 

(i) Prescribed eddy diffusivity mode ls  

The "eddy diffusivity" approach prescribes turbulent viscosity 
as a function of postion in the flow without any direct reference 
to local features of either the mean field or time-averaged 
turbulence field. Tanaka et al. 7° examined turbulent mixed 
convection tube flows using a modification of Reichardt's 7x 
eddy diffusivity model. The wall temperature distributions for 
a vertical heated tube computed by Tanaka et al. were opposite 
to observed behavior, showing heat transfer enhancement for 
ascending flow and impairment for descending flow. It was 
concluded that "the theory is not sufficient to estimate heat 
transfer coefficients." The work of Tanaka et al. is the first of 
a number of numerical studies to be reviewed in which the 
developing flow formulation of Equations 12 and 13 is not 
employed. 

(ii) Mixing length models 

In the Prandtl-Taylor mixing length hypothesis (MLH) it is 
postulated that v t may be expressed in terms of a mixing length, 
lm, and the mean velocity gradient: 

vt=l  2 ~ (16) 

Numerous modifications to the original prescription of I m 
(/m = ~cy) have been proposed (see the discussion of Launder 
and Spalding, 72 for example). A modification that has found 
widespread application is due to van Driest 73 in which allowance 
is made for the damping effect of a solid boundary upon 
turbulence in the vicinity of the boundary: 

lm = Ky[-1 - e x p ( - - y + / A + ) ]  (x=0.4;  A + =26.0) (17) 

Malhotra and Hauptmann TM implemented the van Driest 
mixing length model in a fully developed mean flow equation set. 
Computed wall temperature distributions for heated ascending 
and descending flow demonstrated the correct trends, indicating 
heat transfer impairment for upflow and enhancement for 
downflow. Comparison with the wall temperature data of 
Jackson and Evans-Lutterodt 43 for carbon dioxide at near- 
critical conditions showed good agreement for descending flow 
but poor quantitative agreement for ascending flow (Figure 22), 
although the highly variable fluid properties of the experiment 
represent a considerable added complication. 

Walklate 75 tested four mixing length models against the data 
for heated upflow of air with uniform wall flux obtained by 
Carr et al. 76 The data show significant influences of buoyancy, 
demonstrating velocity profile inversion in three of the four test 
case and a marked reduction in the level of Reynolds stress. 
The four mixing length models used by Walklate represent 
various modifications of the van Driest formulation. Walklate 
used the developing flow equations of the form given above, 
thus eliminating an uncertainty present in the work of Tanaka 
et al. 7° and Malhotra and Hauptmann. TM Comparison was 
made with the bulk parameter data (Stanton number and local 
friction coefficient) and profile measurements of Carr et al. 
Discrepancies between calculated and measured bulk parameters 
were large, and computed velocity, temperature and Reynolds 
stress profiles were in poor agreement with the experimental 
data. 
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Figure 22 Comparison between calculations of Malhotra and 
Hauptmann ~4 and data of Jackson and Evans-Lutterodt ~ for 
supercritical pressure carbon dioxide (adapted from Malhotra and 
Hauptmann"; with permission of Harper and Row) 

An early hybrid work by Hsu and Smith 27 combined an 
expression for near-wall turbulent viscosity due to Deissler 7~ 
with the mixing length model for the outer region. The 
calculations indicated only enhancement of heat transfer for 
heated ascending flow, a result that is again contrary to 
observed behavior. The likely cause of this result is the Deissler 
near-wall formulation which, although strictly not a prescribed 
eddy diffusivity model as defined earlier, nonetheless does not 
correctly reflect turbulence production. It should be added that 
fully developed flow was assumed in this early attempt to 
calculate turbulent mixed convection. 

(iii) O n e - e q u a t i o n  transport  m o d e l s  

Studies of turbulent mixed convection in vertical tubes have 
been performed using turbulence models that employ the 
turbulent viscosity concept but which form v, from turbulence 
quantities and include transport effects. The basis for intro- 
duction of turbulence quantities into an equation for v, is the 
Prandtl-Kolmogorov formula in which the square root of 
turbulent kinetic energy, k, forms the velocity scale in the 
constitutive equation. Thus, 

vt=kl/Zlt  (18) 

Models in which a transport equation for one of the scales 
(in practice the velocity scale via k-transport) is employed are 
known as "one-equation" models. Axceil and Hall 64 applied a 
variation of Wolfshtein's 7s one-equation model to their experi- 
mental data for heated descending air flows. An important 
feature of the Wolfshtein model is that it is applicable over the 
entire flow domain, including the viscosity-affected near-wall 
region and thus does not require the specification of "wall 
functions" to bridge that region. Axcell and Hall's calculations 
were qualitatively correct, showing enhancement of heat transfer 
with respect to forced convection. The predicted enhancement 
was, however, considerably less than that found experimentally 
(Figure 23). It was concluded that the one-equation model does 
not offer any advantage over a mixing length model in mixed 
convection calculations. Again there are discrepancies between 
the thermal-hydraulic conditions of the experiment and the 
modeled problem and a fully developed condition was assumed 
in the analysis (although rapid thermal-hydraulic development 
in descending mixed convection flows makes the assumption 
far less limiting than in ascending flows where in many cases 
it is wholly inappropriate). 

(iv) Two-equation transport models 

"Two-equation" models have been applied with some success 
to turbulent mixed convection. These incorporate transport 
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effects on both the velocity and length scales appearing in the 
constitutive equation for v t. The turbulence quantities most 
often selected to form the scales are the turbulent kinetic energy, 
k, and its rate of dissipation, e, as evidenced by Shih's literature 
surveys. 79's° The length scale is obtained as k3/2/~, and the 
Prandtl-Kolmogorov formula takes the following form: 

V t -~ C~k2/e (19) 

Walklate 75 tested three versions of the k ~ e  model with 
developing flow formulations against data of Cart et al,; 76 the 
first model examined was a standard "high-Reynolds-number" 
model (Launder and Spalding 81) in which the k and e transport 
equations were solved for the region y+~>30, analytical wall 
functions being employed to bridge the near-wall region. The 
other two models were variants of a partial low-Reynolds- 
number treatment in which a damping term was applied to the 
expression for v t (Equation 19) following Jones and Launder. a2'sa 
The forms of the k and 8 equations were unaltered from the 
high-Reynolds-number version (although k-transport was solved 
over the entire flow). Walklate found that, as a group, the k ~e 
models performed better than the mixing length models in com- 
puting turbulent mixed convection. Heat transfer calculated 
using the partial low-Reynolds-number models showed relatively 
good agreement with the data of Carr et al.; poorer agreement 
was evident when the high-Reynolds-number model was applied. 
These results were supported by comparisons with the flow 
profile measurements of Carr et al.; the general picture to 
emerge was that  improvement could be gained by the use of 
partial low-Reynolds-number modifications. However, no model 
yielded high quantitative accuracy. Walklate made a single test 
of a partial low-Reynolds-number model against one of the 
velocity profiles measured by Axcell and Hall 6¢ for descending 
flow but found that agreement with data was poorer than that 
found in the comparisons made with the ascending flow profile 
data of Carr et al. 

Abdelmeguid and Spalding a4 combined a standard k ~ e  
model with (unspecified) wall functions in a developing flow 
solution scheme. Computed results demonstrated the correct 
trends in mixed convection heat transfer, i.e. for heated upflow, 
impairment at low Grashof number was succeeded by enhance- 
ment at high Grashof number and, for heated downflow, 
enhancement was found for all values of Grashof number 
(Figure 24). There was no comparison with experimental 
data for bulk parameters; however, reasonable agreement was 
obtained with the velocity and temperature profile measure- 
ments of Buhr et al. 61 for heated ascending flow of mercury. 

Thus, from the results of Walklate 7S and Abdelmeguid and 
Spalding, 84 it would appear that the k ~ e  model offers an 
improvement over simpler models in the calculation of turbulent 
mixed convection, although there are significant discrepancies 
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Figure 23 Comparison between experimental data and theory for 
downward flow turbulent mixed convection (adapted from Axcell 
and Halle'; with permission of Harper and Row) 
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Figure 25 Comparison between calculations of Cotton and 
Jackson eg'Ss and data of SteineP ° for ascending air f low (adapted 
from Cotton and Jackson"8'; with permission of the American 
Society of Mechanical Engineers) 

between computational results and experimental data. The 
likely cause of these discrepancies lies in the treatment of the 
near-wall region: Hall and Jackson 56 identified the importance 
of deviations from "universal" behavior in this region in 
determining levels of mixed convection heat transfer and 
Walklate found that agreement with experimental data was 
improved by the adoption of a partial low-Reynolds-number 
treatment. 

Cotton and Jackson 69's5 examined the performance of a 
low-Reynolds-number k ~ e model due to Launder and Sharma s6 
(a minor re-optimization of the Jones and Launder s2's3 model) 
against a wide range of mixed convection data for air flows. It 
was found that the full low-Reynolds-number treatment cast in 
the developing flow formulation reproduced to good accuracy 
both the experimental heat transfer and (where available) 
velocity, Reynolds stress and temperature profile measurements 
ofCarr et al., ~6 Byrne and Ejiogu 59 and Steiner s° (all ascending 
flow) and of Easby 6s (descending flow with moderate buoyancy 
influence). Figure 25 shows an example of the results obtained 
by Cotton and Jackson: the heat transfer data of Steiner are 

computed accurately over a development length of approxi- 
mately sixty tube diameters. Good agreement was also obtained 
with the velocity profiles of Axceil and Hall 6+ for descending 
flow at high levels of buoyancy, but predictions were in less 
than complete accord with heat transfer data, a feature that is 
examined further below. Polyakov and Shindin s~ have recently 
published experimental data showing heat transfer, velocity, 
temperature and turbulence parameters in heated upward flow, 
and the present authors intend to make comparisons with 
theoretical predictions as part of their continuing programme 
of research. 

It was noted above that the data of Axcell and Hall were 
not computed satisfactorily by Cotton and Jackson using the 
Launder and Sharma model; results presented in Refs. 69 and 
85 show that the calculations return considerably higher levels 
of heat transfer than those measured experimentally (Figure 
26). Recent work by the authors as indicates that improved 
agreement with data is obtained by the inclusion of an 
additional source term in the e-equation proposed by Yap. s9 
Further work is in progress to investigate buoyancy-induced 
recirculation using an elliptic solver developed by Huang and 
Leschziner. 9° 

Two further low-Reynolds-number k ~ e studies are reviewed. 
Renz and Bellinghausen 91 used the Jones and Launder model 
to compute heat transfer to an ascending flow of a refrigerant 
under the conditions of an experiment by Scheidt 92 carried out 
near the thermodynamic critical point (and therefore with 
highly variable fluid properties). The correct qualitative trends 
of wall temperature development were found, although there 
were some significant quantitative discrepancies as shown in 
Figure 27. Tanaka et al. 93 compared a slight variant of the 
Jones and Launder model against their data for heated upflow 
of nitrogen and found generally good agreement between 
measured and calculated Nusselt numbers. Comparison with 
data was limited, however, and does not appear to include 
points in the vicinity of maximum heat transfer impairment. 
Tanaka et al. used the fully developed formulation for their 
calculations which is unsuitable for application to flows with 
high heat transfer impairment where long development lengths 
occur. 

(v) H igher  order m o d e l s  

"Reynolds stress" or "second moment" turbulence models do 
not rely upon the turbulent viscosity concept, but instead 
incorporate transport equations for second order velocity and 
temperature correlations. Launder 94 provides a comprehensive 
discussion of these models. The complexity of Reynolds stress 
models led to the development of truncated forms known as 
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Figure 26 Comparison between calculations of Cotton and 
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to correlate with precision heat transfer in the region of 
impairment using local parameters. In contrast heat transfer 
levels in heated downflow increase monotonically with increasing 
buoyancy and have been correlated successfully in terms of 
local variables. 

Turbulent mixed convection may often be calculated 
accurately using turbulence modeling techniques provided that 
a developing flow solution is used and that the turbulence model 
allows for changes in both turbulence velocity and length scale. 
"Low-Reynolds-number" models should be used, permitting 
solution up to the heated surface; the shear stress may vary 
significantly close to the wall and wall functions based on 
uniform shear are not applicable. 

5O I 

• Tw, experiment 

ot I I I 
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Figure 27 Comparison between calculations of Renz and Bell ing- 
hausen 9~ and data of Scheidt 92 for ascending refrigerant f low 
(adapted from Renz and Bel?inghausen91; wi th permission of Harper 
and Row) 

"algebraic stress models" (ASMs). Reynolds stress models and 
ASMs have found application in complex flows; however, as 
shown by Launder, 9s the ASM formulation reduces to k ~ e  
form in thin shear flows. To and Humphrey 96 applied low- 
Reynolds-number k ~ e and ASM formulations to free convection 
along a heated vertical plate but found only slight differences 
between the performance of the two models. De Lemos and 
Sesonske 97 applied an ASM to mercury mixed convection tube 
flow and found qualitative agreement with data. 

Finally, the direct interaction of buoyancy and turbulence 
via the fluctuating density-velocity correlation is considered. 
Abdelmeguid and Spalding a4 presented results neglecting 
buoyant production and reported that tests indicated that 
inclusion of such terms in the k and e equations had no 
significant effect upon their results. The results of Cotton and 
Jackson 85 confirm this finding, at least to the extent that the 
buoyant production terms were found to exert at most a second 
order influence. Petukhov and Medvetskaya 98 adopted a some- 
what unusual two-equation turbulence model in which equations 
were formulated for turbulent kinetic energy and mean square 
enthalpy fluctuations with buoyant production terms included 
but convection and diffusion neglected. Bulk parameter calcula- 
tions were consistent with experimental data but no comparison 
with profile measurements were made. Further work is necessary 
in order to clarify the importance of direct interaction terms. 

Conclusions 

In laminar mixed convection heat transfer is enhanced in heated 
upward flow and impaired in heated downward flow. The 
problem is amenable to calculation, although transition to 
turbulent flow may occur earlier than for forced convection or 
free convection alone. 

Turbulent mixed convection heat transfer to moderate Prandtl 
number fluids is dictated by changes in turbulent diffusion. In 
heated upward flow heat transfer is impaired with modest 
buoyancy and enhanced with high buoyancy. It is not possible 
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